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The response of single two- and three-dimensional Helmholtz resonators subject to 
external excitation by a plane acoustic wave is studied. The inviscid linearized 
problem is solved by the matched-asymptotic-expansion technique in the low- 
frequency limit, i.e. when the characteristic neck dimension is small compared with 
the acoustic wavelength. The scale of the cavity is chosen such as to tune the system 
to the lowest Helmholtz mode. The results are compared with the classical lumped- 
element model, and refined expressions are derived for the effective mass (added 
length) and stiffness (effective cavity volume) of the resonator. 

1. Introduction 
In the present paper we analyse the response of Helmholtz resonators, which are 

widely used as sound-management devices and which consist of a resonator cavity 
with, in our case, an opening or neck in an infinite rigid baffle (cf. figures 1 and 6). 
In  practice and in our study the resonator is excited by a plane wave incident upon 
the baffle, and the purpose of the models and theories is to predict the response of 
the resonator in terms of acoustic impedance, defined customarily aa the ratio of 
incident acoustic pressure to average normal velocity at the outside neck plane. The 
result is mostly used to determine the resonance frequency of the device where the 
absolute value of the (complex) impedance is a minimum. The basic physical model 
of the Helmholtz resonator includes an air spring (the cavity), a mass (the air mass 
in the neck plus some added mass adjacent to the neck) and a damper, corresponding 
to three terms in the impedance. 

These three terms have in turn been modelled with various degrees of sophistication. 
For cavities small compared with the acoustic wavelength the spring constant is 
determined by relating the volume flow through the neck and the uniform pressure 
in the cavity. The more difficult problem of the added mass or added length 1' of the 
neck has been addressed by Rayleigh (1945), who gave lower and upper bounds for 
I' by considering constant pressure and constant velocity respectively in the neck exit 
plane. A common practice to improve the upper bound of 1' is to assume a suitably 
parametrized family of velocity profiles at the orifice and to invoke the 'principle of 
minimum kinetic energy' (see Rayleigh 1945, Appendix A). The losses finally are 
generally thought to consist of viscous losses within the Stokes boundary layer in the 
neck, and of radiation losses. 

An extensive review of the lumped-elements approach (the spring-mass damper 
model) can be found in Ingard (1953). Addressing the problem of harbour resonance, 
which is directly related to the resonance of a two-dimensional Helmholtz resonator, 
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FIGURE 1.  The geometry of the 2-dimensional Helmholtz resonator. 

Carrier, Shaw & Miyata (1971) have suggested a refined approach in which the 
external wave field, the mouth and the harbour basin (the cavity) are treated 
separately: the solutions of the (linear) wave equation are sought in each region and 
patched together using continuity of force (pressure) and flux (average velocity). Miles 
(1971) and Miles & Lee (1975) combine these ideas with the electrical analogy of the 
lumped-element model. To arrive at an estimate of the harbour impedance, they use 
a variational approach related to Rayleigh’s minimum kinetic-energy principle. 

A common characteristic of all the treatments mentioned above is the lack of error 
estimates in terms of the ratio of, say, neck width to acoustic wavelength and the 
lack of a formal procedure to improve their accuracy. 

In  this paper we will remedy these deficiencies, at  least for simple geometries, by 
seeking solutions of the linearized inviscid basic equations in terms of (singular) 
low-frequency expansions in the exterior, neck and cavity and by asymptotically 
matching them. This process, which can formally be extended to any order in the 
expansion parameter (which in our case is the product of acoustic wavenumber and 
characteristic neck dimension) has already been used successfully in related problems 
by Lesser & Lewis (1972 a, b). For a general overview see also Lesser & Crighton (1976). 

In  the following the analysis will be developed in detail for a two-dimensional 
resonator of arbitrary (although small compared with the acoustic wavelength) neck 
length. For this case the acoustic energy balance, and specifically the redistribution 
of energy by the resonator, will be discussed. A special three-dimensional resonator 
with a neck of zero length will also be considered as an independent check of the 
solution method, and the results will be discussed along the way. 

2. The two-dimensional resonator 
A single resonator in an infinite baffle, as shown in figure 1, is considered. The 

semicylindrical shape of the cavity has been chosen for mathematical simplicity. In 
the following the excitation is achieved by a plane sound wave incident upon the 
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baffle, and the resonance is calculated by a linearized inviscid analysis. The result 
will be presented in the form of an acoustic impedance, defined as the ratio of average 
pressure (or incident pressure) and average normal velocity at the outside end of the 
orifice ( x  = b, -a  < y G a) .  

First the acoustic disturbance quantities (subscript a) are nondimensionalized with 
mean quantities (subscript 0) in the following way: 

The coordinates are scaled with the acoustic wavelength to adapt the formulation 
to the region x 2 b where acoustic waves are propagating. Assuming harmonic forcing 
proportional to exp [-id] = exp [ - i€], the linearized equations of energy, together 
with the equation of state for a perfect gas, continuity and momentum take the form 

p = p ,  % * u =  ip, %p =iu. (2.2) 

$"+p = 0. (2.3) 

Combining these equations leads to the Helmholtz equation 

Next we turn to the solution of these equations in the Helmholtz region, the neck 
region and the cavity. After this the solutions in the different regions are matched 
in $2.4 and the acoustic impedance is derived subsequently. 

2. I. The Helmholtz region 
In  this region 2 2 6, the Helmholtz equation has to be solved subject to the boundary 

(2.4) 

conditions 

1 - = O  azi f o r 2 = 6 a n d I f j I > d ,  
a2 

and a radiation condition (except for the incident wave) as Po + co. 

The hat on the acoustic quantities indicates a solution pertinent to the Helmholtz 
region. For the following we will consider an excitation by a plane wave coming from 
the fourth quadrant with the angle Q, enclosed between its wavevector and the x-axis. 
The incident wave si exp [ - i(2 - 6 )  cos Q,+ ifj sin Q,] can immediately be combined 
with its reflection from the infinite baffle to give 

9 = pi cos ~ ( 2 - 6 )  costp] eigsinp 
(2.5) 

xpi{l-iP0 cos8, s inQ,-~~( l -cos28 ,  cos2tp)+O(~)} as Po+O. 

The behaviour of the solution close to the resonator mouth is recorded for later use. 
All other waves in this region must originate at the resonator mouth. Hence, for an 
opening small compared with the acoustic wavelength, they must be of the form 

@,, = + i d ,  HC,')[?,] cos [do]. (2.6) 

The behaviour of $lo and for small Po is again listed below for convenience: 

9, x - A, {In yo + y -+in -+?: 

p ,  x A, cos80 --yo(lnFo+y-+-+in)+O(~ InPo) 

+ y - 1 -+in) + O($ ~n to)}, }, } (2.7) lo 
where y = 0.5772 ... is the Euler constant. 
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2.2. The neck region 
The lengthscale in the neck region is taken to be the half-width a of the orifice, where 
a is assumed to be very much smaller than the acoustic wavelength. d = ad' will 
therefore play the role of a small expansion parameter in this problem, 

& = a4 = E < 1, (2.8) 
and the coordinates in this region are magnified according to 

3 = .el€. 
The equations (2.2) and (2.3) in neck variables then take the form 

I #*ii = ie@, # j j  = ieii, 

0"+€2@ = 0. 

(2.9) 

(2.10) 

The last of the above equations shows that to leading order the velocity field in a 
neighbourhood of the neck is the same as for an ideal incompressible fluid. To take 
advantage of this fact, j j  and ii are expanded in powers of e2 : 

(2.11) 

The first index n has been added at  this point to indicate the leading behaviour of 
the solution away from the neck, i.e. for To and Ti --f 00, in accordance with the index 
in (2.6). The solutions n = 0, 1,2 as seen from far away therefore behave like a source, 
dipole and qudrupole respectively. Inserting (2.11) into (2.10) readily yields: 

(2.12) 

We now turn our attention to the solution of Laplace's equation for @n,o in the 
neck geometry of figure 1, where the length of the neck is assumed to be of the same 
order a s  its width, i.e. 6 = b/a  = O(1). As it  will turn out, the solutions depend 
regularly on 6 such that one can safely consider the cases 6+0 (a slit in an infinitely 
thin baffle) and 6 % 1 as long as there is no wave propagation, i.e. provided 6 4 1. 

The solution is most conveniently obtained by conformal mapping. An appropriate 
mapping from the z = %+ig plane onto the lower w-plane is found in Davy (1944), 
and is given in terms of Jacobi elliptic functions and complete elliptic integrals (using 
standard notation) as follows : 

(2.13) 

w = (snY)-l, D = 2E-V2K. 

Bearing in mind that a" = 1 ,  the modulus k and complementary modulus k' = (1 - k2): 
are defined by the equation 

- 6 = (K k'' - 2 K  + 2E') (2D)-'. (2.14) 

The points I w I -+O and I w I -+ 00 thereby correspond to To-+ 00 (outside) and Ti+ 00 

(inside). Furthermore, the vertices z = -6+i correspond to w = T 1. 
Solutions @,,, are now obtained by arranging singularities in the w-plane, i.e. for 

j jo ,  we place a source at the origin w = 0. The complex potential F is thus given by 

(2.15) 4 = q50+i~o = lnw, 
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where $o, is proportional to $o. Likewise, to obtain jj1, we place a dipole at w = 00 

fll*) = $i*)+i$i*) = w*l. (2.16) o r w = 0 :  

It is clear that no explicit expressions for the $n(Z, 8) can be obtained in the whole 
domain, but, in order to perform the matching with the Helmholtz and cavity 
solutions (see §2.4), we only need their asymptotic expansions for Fi+ 00 (1 w I --f 00)  

and Fo+m (Iwl+O). 
For this we have to establish the asymptotic connection between z and w in both 

cases: from (2.13) it follows that I w I + 00 corresponds to I [I +O such that the series 
expansions for the Jacobi elliptic functions can be used (see Gradshteyn & Ryzhik 
1965, $8.14) 

w =  (an&' x ~ l { l + ) ( l + k Z ) ~ + . . . } ,  

d n * c x  l-kap+ ..., 
cn Y dn C (sn C)-l x t1 (1 -+( 1 + k*) F + . ..} (2.17) i 

The other limit W + O  corresponds to Y+iK. With 5 = i K + c  one obtains 

w x k c ,  

(2.18) 

For the source potential (2.15) we obtain with (2.17) two equations for $o and $o: 

(2.19) I D*(Z+ 6)* = sin* $o e*#o { 1 - (1 + k*) e-860 + . . .}, 
D*$ = cos8$oeB~~{1+(1+kz)e-*~o+ ...}. 

With = (Z+ 6)* + y" we finally obtain 

+ O ( T ) ,  ( F f + 0 O ) .  
(1 + cos 20, 

$o a In [DFJ - 
2Da (2.20) 

The expansion of $o for yo+ 00 can be obtained from (2.18) or by noting that $o has 
to be antisymmetric with respect to Z = 0. From Davy (1944) it is known that the 
points z = f i correspond to w = f ~; hence $o(Z = 0 )  = t Ink and 

$o( Fo, 0,) - t In k = - [h( Ti, 0,) - In k] . (2.21) 

After noting that an arbitrary constant may be added to the solution, the pressure 
in the neck region due to a source at I x I + 00 is given asymptotically by 

(2.22) 

with D = In [Dk-!I. 
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FIQIJRE 2. The modulus k of the elliptic functions in (2.13) versus neck length-to-width ratio b / a :  
-, numerical solution of (2.14); --, approximation (2.23); ---, approximation (2.24). 

In  the following, expressions for D in the case of small and large 6 are derived. Upon 
inspection of (2.14) we find that 6 < 1 corresponds to k' < 1,  whereas 6 %'l 
corresponds to k < 1. Using theexpansionofthe completeellipticintegrals (Gradshteyn 
& Ryzhik 1965, §8.11), we obtain 

k x 1-4(:)'+8:+ ... 

x 
and for 6 % 1 

(2.23) 

I (2.24) 

I n  figure 2 the approximations (2.23) and (2.24) for k are compared with a numerical 
solution of (2.14). It appears that for 6 = b/a  > 0.15, (2.24) constitutes a very good 
approximation, Also of interest for the impedance calculation in $2.4 are the average 
(averaged over #) velocity and pressure a t  the mouth 2 = 6 associated with the 
solution so, ,. Using (2.12) and the divergence theorem on the area S,  (see figure 3) 
readily yields the average 2-velocity 

E,,, , = $in A,. (2.25) 

The #-component of Stokes' theorem on the contour as, (figure 3) together with the 
symmetry condition (2.21) and the result (2.25) gives the average pressure Fo.o a t  

- 

2.66: 
= -;x6A,+B,. (2.26) 
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FIGURE 3. Integration paths and domains for the application 
of the divergence and Stokes' theorems. 

We next turn to the particular solutions iio, ? and so, 1. As so, o-Bo is antisymmetric 
with respect to f = 0 ,  Go, associated with it is symmetric. The asymptotic behaviour 
of a particular solution Co, 1, the radial velocity component is thus given by 

(2.27) 

Application of the divergence theorem on 8, (figure 3) yields the average velocity Zo, 
at f = 6 with an unknown coefficient c ,  multiplying A,, while the same theorem on 
S, yields the constant c = 46jz in (2.27): 

= c , A 0 + 0 x 8 , .  (2.28) 

Integrating (2.27) once, one obtains the asymptotic representation of the particular 
solution go, : 

- 

Similarly we obtain for the dipole (2.16) the results listed below. The use of the 
divergence theorem again leads to the leading-order average velocity at the mouth 
2 = 6 :  

I 
(2.30) 
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From the expressions (2 .5)  and (2.20) it is clear that quadrupoles and higher 
singularities have to be considered, but in the following we will restrict ourselves to 
matching radially symmetric terms (source terms) and terms proportional to cos8 
(dipole terms), as the procedure can easily be extended to include quadrupole and 
higher terms. With this we can now turn to the solution of the basic equation in the 
cavity. 

2.3. The cavity 
For mathematical simplicity a semicylindrical shape of the cavity has been chosen. 
The obvious lengthscale in this region is therefore the cavity radius R, which has to 
be specified in relation to the acoustic wavelength and the neck width. 

In the following we will concentrate on the basic Helmholtz resonance, where the 
pressure in the cavity is constant to leading order. In this regime the results are 
expected to apply approximately to cavity shapes other than semicylindrical, 
provided the frequency is below the lowest cavity resonance ; the correspondence is 
simply established by a volume-preserving transformation of the cavity into a 
semicylindrical shape. For this basic resonance we therefore require AR < 1. For 
frequencies close to and above resonance of the cavity alone, which have been 
considered for instance by Carrier et. al ( 197 1 ) and Miles ( 197 1 ) , the response depends 
strongly on the exact cavity shape. On the other side we also specify a lower bound 
for AR by requiring that R be much larger than the neck width. Therefore, simple 
quarter-wave tubes or similar ‘wide-mouth’ devices will not be considered. In  
summary we have to rescale the coordinates in the cavity according to 

with O(s) < S < O(1). (2.31) 

In order to make a rational choice for S(E) in the range specified above, we note that 
Helmholtz resonators are only of practical interest around resonance. We therefore 
consider the thought experiment where the forcing frequency is kept constant while 
the neck dimensions are continuously decreased to zero (corresponding to s+O) and 
require that during this process the resonator stay tuned. In other words we require 
that the properly scaled radius K = I?/& corresponding to resonance be of order unity 
in the limit s+O. This requirement now enables us to determine S(E) by taking 
recourse to the most basic spring-mass model. We recall that resonance is characterized 
by a minimum of the impedance, which is attained when the spring and the mass 
terms balance. Their ratio therefore has to be of order unity. Using dimensional 
quantities, where l’ ,  S and V are added length, mouth area and cavity volume 

(2.32) 
respectively, we demand that 

P r V ( S ) - l  = O(1). 

The reason for using the added length rather than the actual length 2b is that we 
have set b = O(a) whereas I’ is O(a In [l/s]) and therefore dominant (see e.g. Rayleigh 
1945). Using A2 V proportional to I?2 = S2 E2 and S proportional to a, one arrives a t  

S = (In [1/e])+. (2.33) 

The square of this parameter, in the limit s+O, is related to Miles’ (1971) S (his 
equation (1.4)), which in our notation is (In B)-l. This will become clear from the 
resonance condition (2.56). This choice for S is very close to unity; in fact, according 
to the block-matching idea of Lesser & Crighton (1976), the O(S) quantities belong 
to the same ‘block’ as the 0(1) quantities. Therefore it is not advisable to solve the 
Helmholtz equation iteratively as in the neck region. The resulting series in powers 

- 2  x = -  
6’ 
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of S2 would converge very slowly indeed. Instead, taking advantage of the simple 
cavity geometry, we choose to solve the complete Helmholtz equation (2.3) directly, 
subject to the boundary conditions 

I * = o  o n e i = o , n ,  
a 4  
_ -  " - o on fi = R. 
a?;i 

(2.34) 

The solution is easily found in terms of the Bessel functions J ,  and Neumann 
functions Y, (sometimes also denoted by N n ) .  For the source @o) and dipole B1) 
solutions one obtains 

(2.35) 

(2.37) 

1 I + O ( q  Inti) as t i - t O .  (2.38) 

In  the expressions above, the two functions po and pl, defined in terms of 
derivatives of Bessel functions, are both normalized to one in the limit of the 
argument 6R+O and are plotted on figure 4. In  the range dR < 1 both functions are 
of order unity, but for larger arguments they have alternating poles and zeros. The 
first zero of po, for instance, is found for J,(z) = 0 or z = 3.83, which corresponds to 
the lowest radially symmetric resonance of the cavity alone. No resonances occur for 
arguments smaller than 1-34, the first zero of pl, at any multipole order, in 
confirmation of the previous discussion on the choice of 6. Again the expansions of 
Po and p1 for small ?i = 67 are listed above for use in $2.4. 

A t  this point the necessary solutions in all three regions have been derived and we 
can now proceed to their matching. 

2.4. Matching and results 
In the following the source and dipole solutions will be matched. As pointed out by 
Lesser & Crighton (1976), special care has to be exercised in the presence of 
logarithmic terms, which leads to their block-matching procedure. The present case 
would be potentially worse if the cavity solution were only known as a series 
expansion in s2 (in a more complicated geometry, for instance). In this case powers 
of both In [l/e] and In In [l/e] would appear. Fortunately these difficulties can be 
avoided here by simply not expanding the Bessel functions of the small argument 
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FIGURE 4. The two-dimensional volume-correction factors in the source and 
dipole solutions: -, po defined by (2.35); --, p, defined by (2.37). 

+i = &Fin (2.35) and (2.37) and by treatingpo mdp1 as 0(1) quantities. In the following 
we opt for the intermediate matching procedure of Cole (see Kevorkian & Cole 1981), 
which will yield the same result as the block-matching procedure. 

To match the Helmholtz solution to the neck solution, we introduce the intermediate 
scaling 

(2.39) z 
Ep' 

x * = -  O < a < l ,  

with z = ex*, 5 = Ep-'x*. 

Expanding the Helmholtz solutions (2.5) and (2.6) for rg* = 0(1), i.e. f0 4 1 ,  and 
expanding the neck solutions (2.22), (2.29) and (2.30) for rg* = O ( l ) ,  i.e. Po S 1,  one 
obtains 

(2.41) 1 
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In the overlap region r: = 0(1) the expansions (2.40) and (2.41) have to be identical. 
This yields the following relations (independent of r,* and a) between the coefficients 
which are of course still functions of 8. 

AO(4 = A&), 
B0(e) = jji+Ao(s) 

k- A,(€) = €A$+'(€) -, D 
(2.42) 1 

The same procedure is now applied to match the neck solutions to the cavity 
solutions (2.35) and (2.37). In general one has to choose an intermediate scaling 
between ?, and ?, but, as pointed out earlier, the coordinate in the cavity solutions 
appears only in the combination R = +i such that we can use the same intermediate 
scaling (2.39) aa before with 1 > a > In In [l/s]/2 In [l/s] instead of 1 > a > 0. Using 
now the expansions (2.36) and (2.38) of the cavity solutions for r: = 0(1), i.e. f 4 1, 
we obtain 

The identity between the two expansions (2.43) and (2.44) now leads to a second set 
of relations between the coefficients : 

1 46 2 y-ln2 
A poR2 ln[l /s  

B ~ ( E ) {  1 + €2 ln [ -1 - [ - - 1 + -J} 
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Combining the relations (2.42) and (2.45) obtained from the outside and from the inside 
matching, one finally obtains for the source amplitude A, 

-#i (2~,)- '  = In [:I (I -J-) + D + In 2 - y +tin 
PO E2 

1 +s2- In - --I +y-ln2-D 

x In - ----1 +y-ln2 +O(s4)., 

'"I A [:1(P0:2 1 
{ [f1G0:2 ) 1 (2.46) 

The above error estimate has to be interpreted as a block estimate, i.e. any powers 
of logarithms are allowed to multiply s4. Furthermore, we have for the dipole 
amplitude A!-) 

A!-) = - i ~ @ ~  ED-' sinrp +O(es ) .  (2.47) 

All other amplitudes are easily obtained from the relations (2.42) and (2.45). Using 
the results (2.25), (2.26) and (2.28) of $2.2, we cannow determine theaveragef-velocity 
and pressure at the outside mouth plane iZ = 6, which are needed for the impedance 
calculation, in the forms 

in 
2s 

B = -A0+sc,Ao, 

1 

(2.48) 

If, for the calculation of the impedance, one takes the average mouth pressure as 
reference and uses (2.45) for the ratio Bo/Ao, one finds, as expected, a purely 
imaginary or reactive cavity impedance Z,, as our model contains no dissipation 
mechanism whatsoever : 

If, on the other hand, the pressure #i on the baffle (in the absence of the resonator) 
is used as reference, one obtains the usual impedance Z,, which now contains the 
radiation 'loss' of the cavity. Note that this 'loss' is not related to a dissipation 
mechanism, but is due to accounting only; it represents the amount of energy 
diverted from the incident plane wave into cylindrical waves emanating from the 
resonator mouth : 

The reason for keeping some O(s2) terms is to show that the volume in the naive 
spring-mass model has to include the neck volume as well. This is achieved by 
combining the two underlined terms in (2.50) to give 
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Apart from this, all O ( E ~ )  contributions will be dropped, as they do not contribute 
to physical insight. In the following, the comparison of (2.50) and (2.51) with the basic 
spring-mass model 

(2.52) 2 - --iir&[2b+l']+W 
is 

' - A v  

is carried out, where S is the mouth area (S  = 2a per unit length) and V the effective 
resonator volume per unit length, i.e. the geometric cavity volume V, in the simplest 
model, and W the resistance, non-dimensionalized with po co. Reverting to dimensional 
quantities, we find 

V = in RZp0(AR)+4ab, W = Aa, \ 
nb 
2a 

(2.53) 

Using the expansions (2.23) and (2.24) for small and large b/a,  we obtain the following 
approximations for lNla,  which are compared with the exact evaluation of (2.53) on 
figure 5: 

v 

for b/a 4 1 
an 

1" 
a 

I" 
a 

forb lak0 .15  - c c l n ~ n + l - ~ - 2 e x p  

(2.54) 

(2.55) 

A t  this point the results are in a form amenable to the following comments. 
(a) It has been formally shown that the impedance does not depend on the angle 

of incidence p, of the plane wave. 
(b) The effective volume in the spring term coincides with the physical cavity 

volume only in the limit s+O. For any finite E the volume has to be corrected to 
account for the non-uniform pressure within the cavity. For the present semicylin- 
drical geometry the exact form of this correction factor p0 has been derived. It is 
conjectured that for the lowest Helmholtz mode and other cavity shapes with 
geometric volume V, and no dimension substantially different from 9 the factor p,, 

FIGURE 5. The neck-length-dependent part of the added length 1"la: -, numerical evaluation 
of (2.53); ---, approximation (2.54); -.-*- , approximation (2.55). 
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will only be weakly affected if the equivalent radius R is defined as R = (2 V,/rc)k Until 
now only heuristic corrections based typically on one-dimensional analysis have been 
used (see e.g. Dean 1974; Panton & Miller 1975). Another noteworthy feature is the 
fact that the neck volume has to be included in the effective volume. Although this 
is, in our formulation, a higher-order effect, it might improve predictions in cases 
where the neck volume is a sizeable fraction of the cavity volume. 

(c) The comparison of the added length Z’/a with results of Rayleigh (1945, 1904) 
and Morfey (1969) for the cases of constant pressure and constant velocity in the 
mouth plane shows that the leading contribution (4/7c) In [1/e] (for both sides) is 
recovered. It is easy to  show that this contribution which is independent of b stems 
entirely from the wave field on both sides. So, for instance, it will drop to half the 
above value for a very small cavity with R = O(s). With some work it can be shown 
that for intermediate scalings 2 = O(& x arbitrary powers of logarithms) with 
0 < p < 1 the leading contribution becomes 2(2-/?)/7c In [1 /~] .  

In addition we find that for b = 0 we recover the lower bound of I”/a = 0.809079, 
which is clear, as in this case the mouth plane is to leading order an equipotential 
surface. On the other hand l”/a does not reach Rayleigh’s upper bound of 
i- y = 0.922785. The expansion (2.55) shows that for long necks l”/a approaches the 
intermediate value 0.874368. It is recognized that the limit of long necks is, strictly 
speaking, incompatible with our assumption b/a = O(l),  but the limiting value is 
already practically attained for b/a x 0.5. For very long necks where the actual neck 
length is much larger than the added length, i.e. b/a  % In [l/e], the resonant balance 
(2.32) and the resulting scaling (2.33) would have to be modified. As i t  is of little 
practical use, this case will not be pursued. 

(d) As expected, the resistance W ,  to  the order considered, is identical with the 
resistance of a strip piston, 

For design purposes the accurate prediction of resonant frequencies is desirable, 
and has been somewhat cumbersome for two-dimensional geometries. Recalling that 
resonance is characterized by a minimum of I Zi 1, we find from (2.50), after neglecting 
all O(s2) terms, the resonance condition 

1 1 
(D + In 2 - y), -- poE2 - I+- ln [I/€] 

(2.56) 

which defines w as a function of b/a  and R. I n  the limit E+O, yo is equal to  unity 
and resonance occurs for w =  1, which confirms our scaling argument in $2.3. At 
resonance 2, and all amplitudes assume a particularly simple form: 

Z p s )  = 6, 

(2.57) 

These expressions allow the following conclusions. 
(a) At resonance the amplitude of the radiated cylindrical wave is of the same order 

as the amplitude of the incident wave. Therefore extreme caution with the application 
of two-microphone methods to measure impedance is advisable in two-dimensional 
geometries. 

(b) The pressure at the neck and that in the cavity are of order @, ln[l/e]. From 
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an inspection of (2.36) it appears that, while the uniform part of the cavity pressure 
is x,, the leading term which varies along f is of order xo/ln [1/e], i.e. not very much 
smaller than the uniform part for most applications. This makes the appearance of 
the volume-correction factor physically plausible. It is noted that, for the semicylin- 
drical cavity geometry considered here, the results are also applicable for I? = 0(1), 
where the zeros and poles of p, are of particular interest. At a zero of po or, in other 
words, at a resonance of the cavity alone, the impedance is infinite and the velocity 
at the mouth becomes zero. This is consistent with our linearized inviscid approach, 
which prohibits feeding of energy into a resonating cavity. A t  a pole ofp,, on the 
other hand, the cavity appears like an infinite half-space. The impedance (2.50) 
becomes identical with the impedance of a slotted baffle without attached cavity with 
the only exception of the resistance: the resistance for the slotted baffle is twice the 
value given by (2.50), as the equivalent ‘piston’ at the slot radiates into both 
half-spaces. 

In  addition, we also find higher Helmholtz modes with resonance frequencies given 

In ; (,uO(R)I?~)-1 z I. (2.58) 
by (cf. 2.56) 

This implies that these higher modes correspond to radii I? that are smaller than the 
poles ofp, by an amount of order (In [l/e])-l. This finding is in agreement with Miles’ 
(1971) estimate in his equation (1.6); for a simplified one-dimensional approach see 
also Panton 6 Miller (1975). 

(c) Finally we demonstrate that the resonance condition (2.56) yields useful results 
by comparing with an experiment of Walker & Charwat (1982). A geometry of 
(equivalent) R = 234 mm, a = 3.81 mm and b = 3 mm resulted in a resonance 
frequency of 100 Hz. Using c, = 340 m/s, we find e = 0.007 and, with (2.24), (2.56) 
and figure 4, po = 0.875 and a computed radius R = 216 mm, which is only 7.7 yo in 
error. Considering the fact that the span of the orifice was only 150 mm, making the 
radiation field three-dimensional, this agreement is as good as can be expected. 

(d) Finally, we note that as e+O the velocity in the neck blows up like @Je, i.e. 
for a given incident pressure and a narrowing neck the velocity increases in inverse 
proportion to the available flow area, which is physically sensible. The point to be 
made here is that for the linearized treatment to be valid the ratio @Je has to remain 
small as e+O. Otherwise the limit process e+O is physically meaningless. 

In 52.5 we close the discussion of the two-dimensional resonator by considering 
its energy budget. 

“I 

2.5. The energy balance 

In this subsection it is shown explicitly that the time-averaged acoustic power fed 
into the resonator is equal to the reflected plus the radiated power. This serves as 
a consistency check as no dissipation has been included in the analysis. The time- 
averaged energy-flux vector is given by + Re (pu*), where the asterisk denotes the 
complex conjugate. To compute the radial energy flux, the pressure in the Helmholtz 
region given by (2.5) and (2.6) and the radial velocity v = -i ap/ar associated with 
it are as follows (the dipole radiation, being of order e4 ln[l/e] (cf. 2.47), has been 
neglected) : 

(2.59) I @ = jji COB [?, cos q sin e,] exp [ - it, sin q cos e,] + a i d ,  ~t)(?,) ,  
8 = jji exp [ - iP, sin q cos e,] 

x { - sin q cos 0, cos [?, COB q sin e,] 
+ i cosq sin 8, sin [?, cos cp sin e,]} -$do HI‘)(?,) .  



492 P. A .  Monkewitz and N.-M.  Nguyen-Vo 

The radial energy flux is now integrated over a shell of radius 8,. To obtain additional 
insights, this is done for the fourth and first quadrant separately, which will allow 
study of the ‘transmission ’ of energy between these quadrants when the plane-wave 
incidence is not normal. After a fair amount of rather straightforward work, one 
obtains for the power transmitted through the shells of radius 8, in the fourth (IV) 
and first (I) quadrants (assuming gi real) 

2i?, cosrp 

- +$80i)i{[Re(A,) K(i?,)+Im ( ~ o ) J l ( 8 0 ) ] ~ s i n [ 8 0  0 cosz] dz 

+ [Re(A,) Yo(+,) + Im (A,) J0(8,)] fop cos z cos [ P o  cos z] dz (2.60) 

Considering the expression (2.46) for A, = A,, it  is immediately shown that the second 
term in (2.60) above is identically zero. Addition of nIV and D1 then yields zero, as 
required by our approach. 

In addition it is now possible to evaluate the modification of the first term in (2.60), 
which corresponds to the plane wave and its reflection alone, by the resonator. This 
modification, the third term in (2.60), can be simplified for grazing incidence rp = in. 
The integrals become Struve functions (cf. Abramowitz & Stegun 1968), which can 
be further simplified by considering a large ‘ control-shell ’ radius 8, : 

ZI:v(rp = in) = T sf 80&+(+n)2#i 4, [Re (A,) q(4,) + Im (A,) J,(8,)] H,(8,) 

(2.61) 

As the imaginary part of A, is positive, it follows that, depending on the incidence 
angle of the forcing plane wave, a part of the incident energy is returned to the sender 
instead of being transmitted into the first quadrant. From (2.61) it  is also clear that 
this phenomenon is associated with the radiation resistance, as it is the imaginary 
part of A, that determines the resistance in (2.50). Therefore, when designing a 
sound-absorbing wall with the optimum amount of resistance, the radiation resistance 
should not be added to the dissipative resistance for normal sound incidence, while 
it can be taken into account using (2.60) for other incidence angles. 

3. The three-dimensional resonator 
In this section we consider a three-dimensional Helmholtz resonator consisting of 

a circular hole of radius a in an infinitely thin baffle and a hemispherical cavity. The 
geometry is shown in figure 6, where the x-axis is taken as the symmetry axis. 

The analysis presented below has in part been suggested by Pierce (1981), and will 
only be sketched as all the basic ideas have been developed in 92. 
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FIGURE 6. The geometry of the 3-dimensional Helmholtz resonator. 

3.1. The Helmholtz region 

To simplify matters, we prescribe an excitation by a plane wave running in the 
negative P-direction, i.e. at normal incidence only. In analogy to (2.5), the incoming 
wave is combined with the wave reflected from the baffle at 2 = 0 to 

$3 = jli cos2, 

$3 x $3i { 1 -#: [2 + (3 cos 28 + 1 )] + . . .} ($0 + 0). (3.1) 
In  the small-+o expansion above, the radially symmetric terms have been separated 
from terms proportional to higher zonal harmonics like 3 cos 20+ 1 etc. As in the 
two-dimensional case, we will concentrate on the zeroth-order zonal harmonic or 
radially symmetric solution. The spherical wave analogous to (2.6) emanating from 
the orifice is of the form - &ci 

$30 = A o - 7 ,  
r0 

jlo x Ao+;l{l+i+o-$i+...}. (3-2) 

3.2. The orijice region 
The coordinates in this region are again rescaled according to (2.8) and (2.9), which 
leaves us with the task of solving the Laplace equation in the orifice geometry. This 
problem of incompressible ideal flow through a circular orifice has been solved by 
Lamb (1945, art. 107). Denoting the polar anglein the (y, 2)-plane byp, the appropriate 
coordinate system is 

The coordinate 7 ranges from -a to +a and 8 ranges from zero to +in. The 
potentials satisfying Laplace's equations are given by Lamb as 

2 = cos8 sinhq, = w COST, z" = w sinq, w E sin8 coshq. (3.3) 

#o = cot-' y, (3.4) 
$2 = 2(3 ~ 0 ~ ~ 8 - 1 )  [(3?+ 1)  cot-' f-sy], (3.5) 

f E sinhq. 
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Noting that 
between 8 and 6, we obtain for large r" 
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= P - sin2 6 and considering sin2 6 = (jj2 + P ) / P  to obtain a relation 

sin2 8 sin2 8(4 - 5 sin2 8 )  + 8P + ...}. 

1 
ro 1 2 3  

3 cos 28 + 1 35 sin48 - 40 sin28 + 8 
40r"i 

+... (r"+oo) cot-' 6 cc :- + 
1 3cos2e+i  

cot-'Ccc n-=+ +... (F i+co) .  
Ti 129 

(3.7) 

This provides directly the asymptotic expansions for $,. The trigonometric 
expressions above thereby represent zonal harmonics. As in the two-dimensional case 
it can be shown that the omission of higher zonal harmonics does not affect the 
impedance to the order considered in $3.4. For this reason they will be omitted in 
the following. 

By subtracting the value of $, at the orifice, i.e., ?,I = 0 we can write 

1 $o,occA, r-- +B, (r",+Oo) 

$,,, cc-A, :-- +B, (r"i+oo) 

r, 3 
ri 3 (3.8) 

A,, = 8,; go,, = %A,. J 
The value for the average velocity is obtained directly from (3.3) to (3.5) at small 
7 or from the application of the divergence theorem. Finally we also need the 
particular solution of 02fio, = -$,* , which is found to be 

r " 2  
$o,llx -A O{; --> ;'} -B 0 6  0 (r" 

r"? '{i 6 
f i o , l c c  + A  2-A - B o L  (Fi+oo). 

(3.9) 

3.3. The cavity 
The same scaling argument as for the two-dimensional case in $2.3 applies here. The 
estimate (2.32) with I' = O(a) yields 

6 = &', R =  &-?. (3.10) 

For the hemispherical cavity under consideration, the full Helmholtz equation (2.3) 
can again be solved subject to the impermeability condition a t  ti = fi, with the result 

ji, = T{ Z O  -+R3po(SR) cos 8, +sin Pi}, 
ri 

po(z) = 3C3 tan [z- tan-' 21, 

(3.11) 

p ,  - x A0 { -.-+R3p,[ 1 -93 + -v; + o(q)} (ti +o). 
Ti 

In  analogy to the two-dimensional case, the correction factor po(dE) has been 
normalized to 1 in the limit of vanishing argument, and has the Taylor expansion 

p0(z) x 1-~z2+O(z4) .  (3.12) 
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3.4. Matching and results 
In the following the formal matching procedure is omitted, as it is straightforward. 
Usingp, = O( 1) and, in this case, either the intermediate matching procedure of Cole, 
or Van Dyke’s matching principle, one arrives at the amplitudes 

A o = - A o ,  - 3  A l 0 = d o ,  B 0 =  Lois --- ;}Ao,  A o L G - n - i e  
Po R8 0 

With the result (3.8) for ~ o , o ,  and noting that Zo,l (cf. (2.11)) is proportional to 
2, (with an unknown proportionality constant), we obtain, for the impedance based 
on the incident pressure pi, 

Comparison of this result with the spring-mass model (2.52) yields 

(3.14) 

(3.15) 

Once again, the basic ideas of the spring-mass model are confirmed. In  addition, 
the exact volume-correction factor for a hemispherical cavity has been derived. The 
added length is twice (for both sides) Rayleigh’s (1945) result for a constant-pressure 
‘piston’, as the orifice plane, according to (3.4), is an equipotential surface. For 
non-zero baffle thickness this added length is expected to increase to a value bounded 
from above by 16a/3x, twice the result obtained for a circular piston in a baffle 
(Rayleigh 1945, Appendix A). 

The resistance is again identical with the resistance of a circular piston radiating 
into a half-space. 

Finally we find, in analogy to (2.56), the resonance condition 

(3.16) 

This condition has to be compared with Panton & Miller’s (1975) equation (4): the 
two conditions are identical in the limit of vanishing e. The first correction term 
obtained from expanding po (cf. 3.12), on the other hand, has the opposite sign to 
that of Panton & Miller, who consider a ‘one-dimensional’ elongated cavity. This 
serves as an illustration that neither result should be applied to case where the cavity 
has radically different proportions. 

From (3.13) the amplitudes at resonance are easily computed as 

A p )  = je-l$i, d p )  = 1Pi * * 9 jfp) = ,&res). 0 (3.17) 

Again, at resonance the amplitude A, of the radiated spherical wave is of the same 
order as the incident pressure. 

4. Conclusions 
The impedance of a two- and three-dimensional resonator has been rigorously 

determined in the limit of long acoustic wavelength and small amplitude by using 
the method of matched asymptotic expansions. 

The results for a two-dimensional resonator indicate that Rayleigh’s upper bound 
for the added length (for uniform velocity at the mouth) is not attained. A refined 
upper bound is given, while i t  is shown that the leading-order contribution to the 
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added length is independent of the neck geometry and is determined by the cavity 
size and shape. In both cases (two and three dimensions) the effective cavity volume 
to be used in the simple spring-mass model is determined. It differs from the geometric 
volume by a correction factor, which takes the pressure variation in the cavity into 
account. In addition it is shown in the two-dimensional case that the neck volume 
has to be added to the effective cavity volume. 

Finally, it  is shown explicitly that the ‘radiation-resistance’ term in the impedance 
is related to a redistribution of energy and not to a loss. Its influence on the reflection 
coefficient depends on the incidence angle of the forcing plane wave. ‘Dissipative 
resistance ’, on the other hand, is related to viscous, nonlinear and grazing-flow effects, 
which are all beyond the scope of this investigation. Models for the effect of 
nonlinearity (jetting) can be found in Ingard & Ising (1967), van Wijngaarden (1968) 
and Tang & Sirignano (1973), for instance, while the effect of grazing flow has been 
modelled by Ronneberger (1972), Howe (1979) and Walker & Charwat (ISM), among 
others. 

Support by NASA grant NSG 3236 for this work is gratefully acknowledged. 
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